HW I
A
$$\subseteq |R|$$
, $c \in A^{c}$, $l, l_{1}, l_{2} \in |R|$, $f, g, fi: A = R$.
(unless explicitly mentioned observe)
($i = i, z$).
1. Suppose $f = g$ on $V_{5}(c> \cap (A \setminus i, c_{3})$ for some $\delta = 0$.
Show how $\lim_{X \to c} f(w) = e$ iff $\lim_{X \to c} g(w) = l$.
2. Show by def, that $\lim_{X \to c} f(w) = e$ iff $\lim_{X \to c} (f(w) - e) = 0$
3. Show by def, that $\lim_{X \to c} f(w) = e$ iff $\lim_{X \to 0} f(w) = e$ iff $\lim_{X \to 0} f(w) = e$
4. Fix $A = R$, show by definition, that $\lim_{X \to 0} f(w) = 1$ iff $\lim_{X \to 0} f(w) = g$
5. Let $f \cdot R = iR$ be defined by $f(w) = \frac{1}{2}$ if $x \in Q$.
Show but $\lim_{X \to c} f(w) = \frac{1}{2}$ if $x \in Q$.
6. Suppose $\lim_{X \to c} (f(w))^{*} = loo.$ Can we conclude that
 $\lim_{X \to c} f(w) = \sqrt{2}$ if $1 = e$ iff $1 = 2$.
6. Suppose $\lim_{X \to c} (f(w))^{*} = loo.$ Can we conclude that
 $\lim_{X \to c} f(w) = \sqrt{2}$ if $1 = e$ iff $1 = 2$.
7.* Let $f \cdot R = R$ be defined by $f(x) = \frac{1}{2}x - 1$ if $x \in R$.
 $f(w) = \sqrt{2} + \frac{1}{2}x - \frac{1}{2}x = \frac{1}{2}$.
 $f(x) = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2}$.
 $f(x) = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2}$.
 $f(x) = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2}$.
 $f(x) = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2}$.
 $f(x) = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2}$.
 $f(x) = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2}$

11^t Find Soo multituit 2 is of (strictly) positive
Aritance to the S-neighbourhood
$$V_S(3)$$
 of 3.
Why $S = 1$ cannot do the job?
Show that $\lim_{X \to 3} \frac{\chi^2 + 1}{\chi - 2} = 10$.